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1 Introduction
Despite their comparative simplicity, multi-hole pressure probes continue to be used for the intrusive sampling
of velocity components. While these sensors necessarily have a very low bandwidth (as a consequence of the
length of tubing normally required to connect the probe tip to the pressure sensing elements), they have a
reasonably small measurement volume (typically . 3 mm3). Unlike multi-sensor hot-wire probes, however,
they are temperature-insensitive and robust to the point of being nearly indestructible, and do not require
frequent (time-consuming) calibration.

1.1 Principles of operation
A basic Pitot tube samples the local stagnation pressure P0 at its central hole, and local static pressure P
from holes in its side (nominally parallel to the flow). Since the probe sting may not be perfectly parallel
to the flow, P is usually taken as the mean pressure from a number of holes arranged circumferentially
around the probe body. Then, the local mean velocity parallel to the probe body U may be obtained from
Bernoulli’s equation, as

U =

(
2

ρ
(P0 − P )

)1/2

, (1)

where ρ is the fluid density, and the flow is assumed incompressible. Though (1) is formally only valid if the
flow is entirely parallel to the probe axis, experiments have shown for a variety of Pitot probe tip geometries
that the measured velocity is not particularly sensitive to small changes in the probe angle.

However, as the angle between the flow and the Pitot probe tip increases beyond about 10◦, the pressure
read by the central hole begins to decrease as a larger component of the incident flow is not brought down
to stagnation conditions. While the actual pressure is a complex function of the flow angle and the probe
tip geometry, for a given probe (of fixed geometry) the flow angle may be related directly to the pressure
by a single function which may be obtained by calibration. Note that the effect of tip geometry upon probe
effectiveness is reviewed by Chue (1975).

Consider a single, square-ended tube subjected to flow with velocity magnitude U , at some yaw angle
β relative to the tube axis. If β = 0◦, then the pressure P1 recorded by the tube will be P0. Similarly, if
β = 90◦, P1 = PS . For all angles within the range 0◦ < β < 90◦, then, P0 > P1 > PS , and the relationship
between P1 and β may be expressed as

β = f1

(
2P1

ρU2

)
, (2)

where f1 is some continuous function defined for 0◦ ≤ β ≤ 90◦, and the pressure has been normalized against
the local dynamic pressure in order to render f1 velocity-insensitive. For β < 0◦ or β > 90◦, the hole will be
in the wake of the body of the tube; consequently, P1 will not yield a meaningful value for the local pressure,
and f1 will not necessarily be defined over this range.

To extend the range of measurement, we can attach two tubes side-by-side, with each ground to an angle
of 45◦ relative to the incoming flow and 90◦ relative to the other; this configuration is illustrated in Figure
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Figure 1: Geometry of common multi-hole pressure probes. (a), Two-hole yaw probe; (b) three-hole yaw-
stagnation probe; (c), five-hole cruciform probe.

1(a). In this arrangement, the upper tube will be sensitive to flows between 0◦ and 45◦, while the lower tube
will be sensitive to flows between −45◦ and 0◦. The angle β may then be expressed piecewise, as

β = f1

(
2P1

ρU2

)
− 45◦ < β < 0◦

β = f2

(
2P2

ρU2

)
0◦ < β < 45◦, (3)

where f1 and f2 are arbitrary functions, to be determined by calibration. This system necessarily requires
a priori knowledge of which function to use, if a meaningful value of β is to be obtained from the set of
pressures (P1, P2) at a given measurement station. To this end, it is useful to note that the tube to be used
will always be the one with its face closest to being normal to the flow, and will therefore be registering the
pressure closest to P0 (the maximum possible value). This relationship may be used to provide an explicit
definition of the ranges of the functions f1 and f2; (3) may equally expressed as,

β = f1

(
2P1

ρU2

)
P1 > P2

β = f2

(
2P2

ρU2

)
P2 > P1, (4)

Using (4), then, one may obtain the yaw angle β of an incident flow given only the two pressures (P1, P2)
and a measure of the local dynamic pressure. However, the velocity magnitude will remain unknown; also,
the required estimate of the local dynamic pressure may not necessarily be available. In order to address this
shortcoming, it is convenient to include a stagnation pressure tube in a yaw probe configuration, as illustrated
in Figure 1(b). For relatively small angles, then, the central hole may be expected to yield a reasonable
approximation of the local stagnation pressure. Although there is still no static pressure measurement
directly available, the pressure measured by the hole not used in the direction measurement (and therefore
reading a pressure closest to PS) may be used as an approximation.

The concept of the three-hole yaw probe may be extended into three dimensions, by combining five tubes
in a cruciform arrangement; this is commonly referred to as a five-hole probe, and is illustrated in Figure
1(c). The calibration space of the five-hole probe may then be expressed as,

α = f1

(
2P1

ρU2

)
P1 > P3

α = f3

(
2P3

ρU2

)
P3 > P1

β = f2

(
2P2

ρU2

)
P2 > P4

β = f4

(
2P4

ρU2

)
P4 > P2, (5)
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where α is the pitch angle and β is the yaw angle; the index ‘5’ refers to the central hole, and the indices ‘1’
through ‘4’ indicate the peripheral holes, progressing counter-clockwise from the bottom. Furthermore, the
static and stagnation pressures may be approximated as

P0 ≈ P5

PS ≈ P =
1

4

4∑
i=1

Pi. (6)

The stagnation pressure is closely approximated by the pressure at the central hole, while the average of the
pressures at the peripheral holes P provides an approximation of the static pressure.

There are, however, two critical shortcomings of the system of expressions given by (5) and (6): first, it
is necessary to obtain four independent, piecewise functions through calibration; second, the approximations
for P0 and PS are necessarily poor. The first problem may be addressed by redefining the functions. While
the pressures at the individual holes will be sensitive to changes in flow angularity, the pressure difference
between opposing holes will also be sensitive to flow angularity (although, perhaps, through a smaller range
of angles). We may therefore define pitch and yaw coefficients CPα and CPβ , as

CPα =
P3 − P1

P5 − P

CPβ =
P4 − P2

P5 − P
, (7)

where we have made use of (1) and the approximations in (6) to express the dynamic pressure in terms of the
available pressures. Equation (7) will also be more sensitive to the flow angle than (5), as it is a null-centric
differential measure. To address the error between the approximate static and stagnation pressures used,
the difference between the approximate and actual static and stagnation pressures may also be obtained
through calibration, normalized against the approximate dynamic pressure and expressed as nondimensional
coefficients, so that

CP0 =
P5 − P0

P5 − P

CPS =
P − PS

P5 − P
, (8)

where the values of P0 and PS here may be obtained elsewhere on the measurement plane (from a wind
tunnel free-stream Pitot tube, for example).

In practice, then, a probe is calibrated by positioning it at a series of known angles (α, β) in a flow with a
fixed, known velocity magnitude U , and recording the four coefficients (CPα, CPβ , CP0, CPS) at each (α, β).
From this calibration data set, four independent piecewise functions may be defined, such that

α = fα(CPα, CPβ)

β = fβ(CPα, CPβ)

CP0 = f0(CPα, CPβ)

CPS = fS(CPα, CPβ). (9)

Then, given any set of five pressures measured in a flow of unknown angularity and magnitude, the coefficients
CPα and CPβ may be determined directly from the experimental data using (7). The flow angle (α, β) and
the coefficients CP0 and CPS may then be obtained from (9), either by interpolation or curve-fitting (see
Sumner, 2002, for a comparison of these techniques). The velocity magnitude may be obtained from the
interpolated values of CP0 and CPS by re-arranging the definitions in (9) for (P0−PS) and substituting into
(1), yielding

|VVV| =
(
2

ρ

(
P5 − P

)
(CPS − CP0 + 1)

)1/2

, (10)
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where |VVV| is the magnitude of the velocity vector. It is important to note here that because the static
and stagnation pressure coefficients appear in (10) as a difference only, the number of required calibration
functions may be reduced by defining a dynamic pressure coefficient CPd, such that

CPd = CPS − CP0 =
P0 − PS

P5 − P
− 1 (11)

The coefficient CPd may then be substituted into (10). This approach may be preferable, especially if
differential pressure sensors are used as it is impossible to extract absolute pressures from the process in this
case.

Though inexact, this process of reducing calibration coefficients has been well documented and is generally
accepted (Treaster and Yocum, 1979). This technique may be used for flow angles up to about 30◦, though
the error will increase with increasing flow angle.

2 Multi-hole probes
2.1 Seven-hole probes - current practice
Seven-hole pressure probes operate on much the same principle as five-hole probes, though they do tend
to be somewhat different in geometry. Seven-hole probes are fairly simple to construct, as the tubes are
arranged in close-packed configuration. The tip of the probe is generally machined to form a smooth cone
with a fairly steep face angle (usually 60◦ ∼ 70◦, as illustrated in Figure 2). The larger number of holes
tends to result in more precise measurement, while the large face angle allows the probe to measure flows
of higher angularity with reasonable precision, and provides a good means of approximating the local static
pressure in flows of low angularity.
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Figure 2: Typical geometry and hole numbering convention for a seven-hole pressure probe.

When operating at small flow angles, the seven-hole probe may be used in exactly the same way as a
five-hole probe. The pitch and yaw angles are nondimensionalized into coefficients based on the differences
between pressures on opposite sides of the probe, so that

CPα =
P4 − P1

P7 − P

CPβ =
P5 + P6 − P2 − P3

2
(
P7 − P

) , (12)

where the hole indices are defined as shown in Figure 2, and

P =
1

6

6∑
i=1

Pi. (13)

Note that CPα is identical in definition to that for the five-hole probe, while CPβ differs only in that the
pressures on either side of the probe tip are averaged over two holes at the same horizontal position. The
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static and stagnation pressure coefficients are likewise similarly defined, as

CP0 =
P7 − P0

P7 − P

CPS =
P − PS

P7 − P
, (14)

The flow angularity and velocities may be obtained from the calibration data as described in (9) and (10).
As an example, Figure 3 shows typical values of CPα and CPβ for a seven-hole probe at small angles (so
that the maximum pressure is recorded at hole 7).
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Figure 3: Coefficients of pitch and yaw for a seven-hole probe at small angles.

Because of the manner in which the coefficients in (12) and (14) are defined, these coefficients are only
valid if the flow remains attached everywhere on the surface of the probe tip; typically, for a conical probe tip,
this restricts the flow angularity again to about 30◦ and corresponds to cases where the maximum pressure
is recorded at the centre hole. However, for the case of high angularity (where at least half of the tip of the
probe is expected to be in separated flow), a new set of coefficients may be defined.

For the case of large flow angularity, it is expected that the maximum pressure Pi will be recorded at
some hole i, where i ̸= 7. Because only an angular sector of the probe tip may be used, and because the
probe is axisymmetric, it is more meaningful to determine the flow angularity in terms of the cone and roll
angles, θ and ϕ, in a spherical coordinate system centred at the probe tip so that

U = |VVV| cos(α) cos(β) = |VVV| cos(θ)
V = |VVV| sin(α) = |VVV| sin(θ) sin(ϕ)
W = |VVV| cos(α) sin(β) = |VVV| sin(θ) cos(ϕ), (15)

The relationship between |VVV|, U , V , W , α, β, θ and ϕ is illustrated in Figure 4. Then, the cone coefficient
CPθ and roll coefficient CPϕ may be defined as

CPθ =
Pi − P7

Pi − P
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CPϕ =
PCW − PCCW

Pi − P
, (16)

where PCW and PCCW are the pressures recorded at the holes located adjacent to the ith hole in the clockwise
and counter-clockwise directions, respectively. The coefficients of total and static pressure are then given in
the same manner as (14), though recognizing that Pi now supersedes P7 as the best available approximation
of P0, so that

CP0 =
Pi − P0

Pi − P

CPS =
P − PS

Pi − P
. (17)

This system results in seven calibration curves; one low-angle case (for use when the maximum pressure is
recorded at hole 7), and six high-angle cases (one for use in each of the cases where the maximum pressure
is recorded at holes 1 through 6). This process for the calibration of seven-hole pressure probes is generally
accepted, and is reviewed in detail by Zilliac (1989).
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Figure 4: Graphical representation of velocities in pitch/yaw and spherical coordinate systems.
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